Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
J Control Release ; 368: 275-289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382812

RESUMO

Virus like particles (VLPs) have been well recognized as one of the most important vaccine platforms due to their structural similarity to natural viruses to induce effective humoral and cellular immune responses. Nevertheless, lack of viral nucleic acids in VLPs usually leads the vaccine candidates less efficient in provoking innate immune against viral infection. Here, we constructed a biomimetic dual antigen hybrid influenza nanovaccines THM-HA@Mn with robust immunogenicity via in situ synthesizing a stimulator of interferon genes (STING) agonist Mn3O4 inside the cavity of a recombinant Hepatitis B core antigen VLP (HBc VLP) having fused SpyTag and influenza M2e antigen peptides (Tag-HBc-M2e, THM for short), followed by conjugating a recombinant hemagglutinin (rHA) antigen on the surface of the nanoparticles through SpyTag/SpyCatcher ligating. Such inside Mn3O4 immunostimulator-outside rHA antigen design, together with the chimeric M2e antigen on the HBc skeleton, enabled the synthesized hybrid nanovaccines THM-HA@Mn to well imitate the spatial distribution of M2e/HA antigens and immunostimulant in natural influenza virus. In vitro cellular experiments indicated that compared with the THM-HA antigen without Mn3O4 and a mixture vaccine consisting of THM-HA + MnOx, the THM-HA@Mn hybrid nanovaccines showed the highest efficacies in dendritic cells uptake and in promoting BMDC maturation, as well as inducing expression of TNF-α and type I interferon IFN-ß. The THM-HA@Mn also displayed the most sustained antigen release at the injection site, the highest efficacies in promoting the DC maturation in lymph nodes and germinal center B cells activation in the spleen of the immunized mice. The co-delivery of immunostimulant and antigens enabled the THM-HA@Mn nanovaccines to induce the highest systemic antigen-specific antibody responses and cellular immunogenicity in mice. Together with the excellent colloid dispersion stability, low cytotoxicity, as well as good biosafety, the synthetic hybrid nanovaccines presented in this study offers a promising strategy to design VLP-based vaccine with robust natural and adaptive immunogenicity against emerging viral pathogens.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/genética , Imunidade Celular , Adjuvantes Imunológicos , Camundongos Endogâmicos BALB C , Anticorpos Antivirais , Infecções por Orthomyxoviridae/prevenção & controle
2.
Environ Sci Ecotechnol ; 20: 100370, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38292137

RESUMO

Domestic and industrial wastewater treatment plants (WWTPs) are facing formidable challenges in effectively eliminating emerging pollutants and conventional nutrients. In microbiome engineering, two approaches have been developed: a top-down method focusing on domesticating seed microbiomes into engineered ones, and a bottom-up strategy that synthesizes engineered microbiomes from microbial isolates. However, these approaches face substantial hurdles that limit their real-world applicability in wastewater treatment engineering. Addressing this gap, we propose the creation of a Global WWTP Microbiome-based Integrative Information Platform, inspired by the untapped microbiome and engineering data from WWTPs and advancements in artificial intelligence (AI). This open platform integrates microbiome and engineering information globally and utilizes AI-driven tools for identifying seed microbiomes for new plants, providing technical upgrades for existing facilities, and deploying microbiomes for accidental pollution remediation. Beyond its practical applications, this platform has significant scientific and social value, supporting multidisciplinary research, documenting microbial evolution, advancing Wastewater-Based Epidemiology, and enhancing global resource sharing. Overall, the platform is expected to enhance WWTPs' performance in pollution control, safeguarding a harmonious and healthy future for human society and the natural environment.

3.
Sci Total Environ ; 914: 169982, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215846

RESUMO

The ecological impact of microplastics (MPs) in coastal environments has been widely studied. However, the influence of small microplastics in the actual environment is often overlooked due to measurement challenges. In this study, Hangzhou Bay (HZB), China, was selected as our study area. High-throughput metagenomic sequencing and micro-Raman spectrometry were employed to analyze the microbial communities and microplastics of coastal sediment samples, respectively. We aimed to explore the ecological impact of MPs with small sizes (≤ 100 µm) in real coastal sediment environments. Our results revealed that as microplastic size decreased, the environmental behavior of MPs underwent alterations. In the coastal sediments, no significant correlations were observed between the detected MPs and the whole microbial communities, but small MPs posed potential hazards to eukaryotic communities. Moreover, these small MPs were more prone to microbial degradation and significantly affected carbon metabolism in the habitat. This study is the first to reveal the comprehensive impact of small MPs on microbial communities in a real coastal sediment environment.


Assuntos
Microbiota , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/análise , Plásticos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental
4.
Biotechnol Bioeng ; 121(1): 206-218, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747706

RESUMO

The messenger RNA (mRNA) 5'-cap structure is indispensable for mRNA translation initiation and stability. Despite its importance, large-scale production of capped mRNA through in vitro transcription (IVT) synthesis using vaccinia capping enzyme (VCE) is challenging, due to the requirement of tedious and multiple pre-and-post separation steps causing mRNA loss and degradation. Here in the present study, we found that the VCE together with 2'-O-methyltransferase can efficiently catalyze the capping of poly dT media-tethered mRNA to produce mRNA with cap-1 structure under an optimized condition. We have therefore designed an integrated purification and solid-based capping protocol, which involved capturing the mRNA from the IVT system by using poly dT media through its affinity binding for 3'-end poly-A in mRNA, in situ capping of mRNA 5'-end by supplying the enzymes, and subsequent eluting of the capped mRNA from the poly dT media. Using mRNA encoding the enhanced green fluorescent protein as a model system, we have demonstrated that the new strategy greatly simplified the mRNA manufacturing process and improved its overall recovery without sacrificing the capping efficiency, as compared with the conventional process, which involved at least mRNA preseparation from IVT, solution-based capping, and post-separation and recovering steps. Specifically, the new process accomplished a 1.76-fold (84.21% over 47.79%) increase in mRNA overall recovery, a twofold decrease in operation time (70 vs. 140 min), and similar high capping efficiency (both close to 100%). Furthermore, the solid-based capping process greatly improved mRNA stability, such that the integrity of the mRNA could be well kept during the capping process even in the presence of exogenously added RNase; in contrast, mRNA in the solution-based capping process degraded almost completely. Meanwhile, we showed that such a strategy can be operated both in a batch mode and in an on-column continuous mode. The results presented in this work demonstrated that the new on-column capping process developed here can accomplish high capping efficiency, enhanced mRNA recovery, and improved stability against RNase; therefore, can act as a simple, efficient, and cost-effective platform technology suitable for large-scale production of capped mRNA.


Assuntos
Poli T , Ribonucleases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Capuzes de RNA/química , Capuzes de RNA/genética
5.
J Biomol Struct Dyn ; : 1-14, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37908124

RESUMO

Self-assembling protein nanoparticles showed promise for vaccine design due to efficient antigen presentations and safety. However, the unpredictable formations of epitopes-fused protein assemblies remain challenging in the upstream design. This study suggests employing molecular dynamic (MD) simulations to investigate the assembly properties of Hepatitis B core protein (HBc) from thermodynamic perspectives. Eight HBc derivatives were expressed in E. coli, with their self-assembly properties characterised by high-performance liquid chromatography and transmission electron microscopy. MD simulations on the dimers, based on AlphaFold-predicted 3D structures, analysed the derivative at the atomic level. Results revealed that HBc derivatives can form dissociative polymers or large multi-subunit structures due to assembly failures. The instability of the dimer in aqueous solvents or inappropriate intradimer distances could cause major assembly failures. Polar solvation energies played a vital role too in forming assemble-incompetent dimers. Importantly, our study demonstrated that MD simulations on dimers can provide preliminary predictions on the assembly properties of HBc derivatives, thus aiding vaccine design by lowering the risk of self-assembling failures in engineered proteins.Communicated by Ramaswamy H. Sarma.

6.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4295-4307, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37877406

RESUMO

We developed a method for accurate quantification of the intact virus particles in inactivated avian influenza virus feedstocks. To address the problem of impurities interference in the detection of inactivated avian influenza virus feedstocks by direct high performance size exclusion chromatography (HPSEC), we firstly investigated polyethylene glycol (PEG) precipitation and ion exchange chromatography (IEC) for H5N8 antigen purification. Under the optimized conditions, the removal rate of impurity was 86.87% in IEC using DEAE FF, and the viral hemagglutination recovery was 100%. HPSEC was used to analyze the pretreated samples. The peak of 8.5-10.0 min, which was the characteristic adsorption of intact virus, was analyzed by SDS-PAGE and dynamic light scattering. It was almost free of impurities and the particle size was uniform with an average particle size of 127.7 nm. After adding antibody to the IEC pretreated samples for HPSEC detection, the characteristic peak disappeared, indicating that IEC pretreatment effectively removed the impurities. By coupling HPSEC with multi-angle laser scattering technique (MALLS), the amount of intact virus particles in the sample could be accurately quantified with a good linear relationship between the number of virus particles and the chromatographic peak area (R2=0.997). The established IEC pretreatment-HPSEC-MALLS assay was applied to accurate detection of the number of intact virus particles in viral feedstocks of different subtypes (H7N9), different batches and different concentrations, all with good applicability and reproducibility, Relative standard deviation < 5%, n=3.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Animais , Reprodutibilidade dos Testes , Cromatografia em Gel , Vírion , Lasers
7.
Environ Res ; 238(Pt 1): 117106, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699472

RESUMO

Wastewater treatment plants (WWTPs) effluent often contains a significant amount of residual organic pollutants and nutrients, causing disturbance to the coastal effluent receiving areas (ERA). Microbial communities in coastal ERA sediments may benefit from the coexistence of organic pollutants and nutrients, promoting the emergence of versatile taxa that are capable of eliminating these substances simultaneously. However, the identification and exploration of versatile taxa in natural environments under anthropogenic disturbances remain largely uncharted territory. In this study, we specifically focused on the versatile taxa coupled by the degradation of aromatic compounds (ACs) and denitrification, using Hangzhou Bay in China as our study area. We explored how WWTPs effluent disturbance would affect the versatile taxa, and particularly examined the role of disturbance intensity in shaping their composition. Intriguingly, we found that versatile taxa were mainly derived from denitrifiers like Pseudomonas, suggesting the fulfilled potential of denitrifiers regarding ACs degradation. We also discovered that moderate disturbance stimulated the diversity of versatile taxa, resulting in strengthened functional redundancy. Through correlation network analysis, we further demonstrated that moderate disturbance enhanced the community-level cooperation. Thus, moderate disturbance serves as a catalyst for versatile taxa to maintain community function, making them more resilient to effluent disturbances. Additionally, we identified COD and NO3--N concentrations as significant environmental factors influencing the versatile taxa. Overall, our findings reveal the role of effluent disturbances in the promotion of versatile taxa, and highlight moderate disturbance can foster more robust versatile taxa that are better equipped to handle effluent disturbances.


Assuntos
Poluentes Ambientais , Microbiota , Desnitrificação , Efeitos Antropogênicos , China
8.
Environ Int ; 179: 108140, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595537

RESUMO

Antibiotics are emerging pollutants that have detrimental effects on both target and non-target organisms in the environment. However, current methods for environmental risk assessment primarily focus on the risk to non-target organisms in ecosystems, overlooking a crucial risk of antibiotics - the induction of resistance in targeted bacteria. To address this oversight, we have incorporated resistance (R) risk with persistence, bioaccumulation and toxicity (PBT) to establish a more comprehensive PBTR (persistence, bioaccumulation, toxicity, and resistance) framework for antibiotic-specific risk assessment. Using the PBTR framework, we evaluated 74 antibiotics detected in Chinese seawater from 2000 to 2021, and identified priority antibiotics. Our analysis revealed that the priority antibiotics with R risk accounted for the largest proportion (50% to 70%), followed by P risk (40% to 58%), T risk (16% to 35%) and B risk (0 to 13%). To further categorize these priority antibiotics, we assigned them a risk level according to their fulfillment of criteria related to P, B, T, and R. Antibiotics meeting all four indicators were classified as Grade I, representing the highest risk level. Grade II and Grade III were assigned to antibiotics meeting three or two indicators, respectively. Antibiotics meeting only one indicator were classified as Grade IV, representing the lowest risk level. The majority of priority antibiotics fell into Grade IV, indicating low risk (55% to 79%), followed by Grade III (16% to 45%). The highest risk antibiotic identified in this study was clindamycin (CLIN), categorized as Grade II, in the East China Sea. Our findings aligned with previous studies for 25 antibiotics, affirming the validity of the PBTR framework. Moreover, we identified 13 new priority antibiotics, highlighting the advancement of this approach. This study provides a feasible screening strategy and monitoring recommendations for priority antibiotics in Chinese seawater.


Assuntos
Antibacterianos , Bioacumulação , Resistência Microbiana a Medicamentos , Água do Mar , Poluentes Químicos da Água , Antibacterianos/efeitos adversos , Antibacterianos/análise , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Ecossistema , Água do Mar/análise , Poluição Química da Água , Poluentes Químicos da Água/efeitos adversos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacologia , Poluentes Químicos da Água/toxicidade , China
9.
J Chromatogr A ; 1707: 464321, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37639849

RESUMO

Messenger RNA (mRNA) technologies have shown great potential in prophylactic vaccines and therapeutic medicines due to their adaptability, rapidity, efficacy, and safety. The purity of mRNA determines the efficacy and safety of mRNA drugs. Though chromatographic technologies are currently employed in mRNA purification, they are facing challenges, mainly arising from the large size, relatively simple chemical composition, instability, and high resemblance of by-products to the target mRNA. In this review, we will first make a comprehensive analysis of physiochemical properties differences between mRNA and proteins, then the major challenges facing in mRNA purification and general considerations are highlighted. A detailed summary of the state-of-arts in mRNA chromatographic purification will be provided, which are mainly classified into physicochemical property-based (size, charge, and hydrophobicity) and chemical structure-based (phosphate backbone, bases, cap structure, and poly A tail) technologies. Efforts in eliminating dsRNA byproducts via post in vitro transcript (IVT) purification and by manipulating the IVT process to reduce the generation of dsRNA are highlighted. Finally, a brief summary of the current status of chromatographic purification of the emerging circular mRNA (circRNA) is provided. We hope this review will provide some useful guidance for the Quality by Design (QbD) of mRNA downstream process development.


Assuntos
Cromatografia , Fosfatos , RNA de Cadeia Dupla , RNA Mensageiro
10.
Vaccine ; 41(33): 4867-4878, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37391312

RESUMO

Presenting exogenous antigens on virus-like particles (VLPs) through "plug-and-display" decoration strategies based on SpyTag/SpyCatcher isopeptide bonding have emerged as attractive technology for vaccine synthesis. However, whether the position of ligation site in VLPs will impose effects on immunogenicity and physiochemical properties of the synthetic vaccine remains rarely investigated. Here in the present work, the well-established hepatitis B core (HBc) protein was used as chassis to construct dual-antigen influenza nanovaccines, with the conserved epitope peptides derived from extracellular domain of matrix protein M2 (M2e) and hemagglutinin (HA) as target antigens. The M2e antigen was genetically fused to the HBc in the MIR region, together with the SpyTag peptide, which was fused either in the MIR region or at the N-terminal of the protein, so that a recombinant HA antigen (rHA) linked to SpyCatcher can be displayed on it, at two different localizations. Both synthetic nanovaccines showed ability in inducing strong M2e and rHA-specific antibodies and cellular immunogenicity; nevertheless, the one in which rHA was conjugated by N-terminal Tag ligation, was superior to another one synthesized by linking the rHA to MIR region SpyTagged-HBc in all aspects, including higher antigen-specific immunogenicity responses, lower anti-HBc carrier antibody, as well as better dispersion stability. Surface charge and hydrophobicity properties of the two synthetic nanovaccines were analyzed, results revealed that linking the rHA to MIR region SpyTagged-HBc lead to more significant and disadvantageous alteration in physiochemical properties of the HBc chassis. This study will expand our knowledge on "plug-and-display" decoration strategies and provide helpful guidance for the rational design of HBc-VLPs based modular vaccines by using SpyTag/Catcher synthesis.


Assuntos
Hepatite B , Vacinas contra Influenza , Influenza Humana , Vacinas de Partículas Semelhantes a Vírus , Humanos , Animais , Camundongos , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas Sintéticas/genética , Vacinas contra Influenza/genética , Camundongos Endogâmicos BALB C , Antígenos do Núcleo do Vírus da Hepatite B/genética
11.
J Control Release ; 362: 784-796, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37003490

RESUMO

Hepatitis B core protein virus-like particles (HBc VLPs) have attracted wide attentions using as drug delivery vehicles, due to its excellent stability and easy in large scale production. Here in the present work, we report unique thermal-triggered loading and glutathione-responsive releasing property of the HBc particles for anticancer drug delivery. Through reversible temperature-dependent hole gating of the HBc particle capsid, about 4248 doxorubicin (DOX) were successfully encapsulated inside nanocage of a single nanoparticle at high HBc recovery of 83.2%, by simply incubating the DOX with HBc at 70 °C for 90 min. The new strategy was significantly superior to the disassembly-reassembly methods, which can only yield 3556 DOX loading at 52.3% HBc recovery. The thermal-sensitive drug entry channel in HBc was analyzed by molecular dynamic simulations, and the G113, G117 and R127 were identified as the key amino acid residues that are not conducive to the entrance of DOX but sensitive to temperature. Especially, the ΔGbind of R127 become even higher at high temperature, mutation of the R127 would be the first choice to make the drug entry thermodynamically easier. Due to plenty of disulfide bonds linking the HBc subunits, the HBc particles loaded with DOX exhibited intrinsic glutathione (GSH) responsivity for efficient controlled release in tumor sites. To further increase the tumor-targeting effect of the drug, Cyclo(Arg-Gly-Asp-d-Tyr-Lys) peptide was conjugated to the surface of HBc through a PEG linker. The prepared HBc-based anticancer drug showed significantly improved stability, tumor specificity, and in vivo anticancer activity on MCF7-bearing Balb/c-nu mice. Overall, our work demonstrated that the HBc VLPs can be an ideal drug carrier to fulfill requirement of the intelligent loading and "on demand" release of the therapeutic agents for efficient cancer therapy with minimal adverse effects.

12.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982238

RESUMO

Keloids, benign fibroproliferative cutaneous lesions, are characterized by abnormal growth and reprogramming of the metabolism of keloid fibroblasts (KFb). However, the underlying mechanisms of this kind of metabolic abnormality have not been identified. Our study aimed to investigate the molecules involved in aerobic glycolysis and its exact regulatory mechanisms in KFb. We discovered that polypyrimidine tract binding (PTB) was significantly upregulated in keloid tissues. siRNA silencing of PTB decreased the mRNA levels and protein expression levels of key glycolytic enzymes and corrected the dysregulation of glucose uptake and lactate production. In addition, mechanistic studies demonstrated that PTB promoted a change from pyruvate kinase muscle 1 (PKM1) to PKM2, and silencing PKM2 substantially reduced the PTB-induced increase in the flow of glycolysis. Moreover, PTB and PKM2 could also regulate the key enzymes in the tricarboxylic acid (TCA) cycle. Assays of cell function demonstrated that PTB promoted the proliferation and migration of KFb in vitro, and this phenomenon could be interrupted by PKM2 silencing. In conclusion, our findings indicate that PTB regulates aerobic glycolysis and the cell functions of KFb via alternative splicing of PKM.


Assuntos
Processamento Alternativo , Queloide , Humanos , Queloide/metabolismo , Comunicação Celular , Glicólise/genética , Fibroblastos/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Proliferação de Células/genética
13.
Nanoscale Adv ; 5(5): 1433-1449, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36866262

RESUMO

Encapsulating antigens with zeolitic imidazole framework-8 (ZIF-8) exhibits many advantages in vaccine development. However, most viral antigens with complex particulate structures are sensitive to pH or ionic strength, which cannot tolerate harsh synthesis conditions of ZIF-8. Balancing the viral integrity and the growth of ZIF-8 crystals is crucial for the successful encapsulation of these environment-sensitive antigens in ZIF-8. Here, we explored the synthesis of ZIF-8 on inactivated foot and mouth disease virus (known as 146S), which is easily disassociated into no immunogenic subunits under the existing ZIF-8 synthesis conditions. Our results showed that intact 146S could be encapsulated into ZIF-8 with high embedding efficiency by lowering the pH of the 2-MIM solution to 9.0. The size and morphology of 146S@ZIF-8 could be further optimized by increasing the amount of Zn2+ or adding cetyltrimethylammonium bromide (CTAB). 146S@ZIF-8 with a uniform diameter of about 49 nm could be synthesized by adding 0.01% CTAB, which was speculated to be composed of single 146S armored with nanometer-scale ZIF-8 crystal networks. Plenty of histidine on the 146S surface forms a unique His-Zn-MIM coordination in the near vicinity of 146S particles, which greatly increases the thermostability of 146S by about 5 °C, and the nano-scale ZIF-8 crystal coating exhibited extraordinary stability to resist EDTE-treatment. More importantly, the well-controlled size and morphology enabled 146S@ZIF-8(0.01% CTAB) to facilitate antigen uptake. The immunization of 146S@ZIF-8(4×Zn2+) or 146S@ZIF-8(0.01% CTAB) significantly enhanced the specific antibody titers and promoted the differentiation of memory T cells without adding another immunopotentiator. This study reported for the first time the strategy of the synthesis of crystalline ZIF-8 on an environment-sensitive antigen and demonstrated that the nano-size and appropriate morphology of ZIF-8 are crucial to exert adjuvant effects, thus expanding the application of MOFs in vaccine delivery.

14.
Environ Pollut ; 322: 121122, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681378

RESUMO

The wastewater treatment plant (WWTP) effluent discharge affects the microorganisms in the receiving water bodies. Despite the ecological significance of microbial communities in pollutant degradation and element cycling, how the community diversity is affected by effluent remains obscure. Here, we compared the sediment bacterial communities exposed to different intensities of WWTP effluent discharge in Hangzhou Bay, China: i) a severely polluted area that receives effluent from an industrial WWTP, ii) a moderately polluted area that receives effluent from a municipal WWTP, and iii) less affected area that inner the bay. We found that the sediment bacterial diversity decreased dramatically with pollution levels of inorganic nutrients, heavy metals, and organic halogens. Microbial community assembly model analysis revealed increased environmental selection and decreased species migration rate in the severely polluted area, resulting in high phylogenetic clustering of the bacterial communities. The ecological networks were less complex in the two WWTP effluent receiving areas than in the inner bay area, as suggested by the smaller network size and lower modularity. Fewer negative network associations were detected in the severely (6.7%) and moderately (8.3%) polluted areas than in the less affected area (16.7%), indicating more collaborative inter-species behaviors are required under stressful environmental conditions. Overall, our results reveal the fundamental impacts of WWTP effluents on the ecological processes shaping coastal microbial communities and point to the potential adverse effects of diversity loss on ecosystem functions.


Assuntos
Microbiota , Purificação da Água , Filogenia , Águas Residuárias , Sedimentos Geológicos/microbiologia , Bactérias
15.
Ann Plast Surg ; 90(1): 56-60, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534101

RESUMO

BACKGROUND: Chondrolaryngoplasty is a classical facial feminization surgery for transgender women. In recent years, however, an increasing number of patients assigned female at birth are seeking chondrolaryngoplasty for esthetic purposes. Traditional chondrolaryngoplasty can no longer cope with problems of the growing group whose leading cause of laryngeal prominence differs from the transgender population. METHODS: A modified technique is designed as a supplement to the classical procedure. After the cartilage reduction process, paired platysma flaps are raised and advanced successively, resulting in an overlapped area over the thyroid notch, to further camouflage the thyroid prominence. To evaluate the efficiency of the new technique, a retrospective survey of 34 patients (5 men and 29 women) who underwent the surgery from 2016 to 2021 was performed, via a 5-point Likert scale including 7 questions. Physician assessment was also accomplished to provide an extra estimation. Complications were followed up and analyzed to evaluate the safety of modified surgery as well. RESULTS: Although only half of the patients graded prominence changes more than "moderately changed," as many as 75.0% of them still expressed "completely satisfied" or "satisfied very much" with the outcome. Similarly, physician assessment indicated a satisfactory result in appearance improvement. No severe and irreversible complications occurred after surgery, but lasting scar-related issues were reported by 4 patients and should be paid more attention to. CONCLUSIONS: Generally speaking, the new technique is both safe, efficient, and satisfying for most patients, especially ones assigned females at birth with esthetic demand.


Assuntos
Laringoplastia , Procedimentos de Cirurgia Plástica , Cirurgia de Readequação Sexual , Feminino , Humanos , Masculino , Pescoço/cirurgia , Estudos Retrospectivos , Cartilagem Tireóidea/cirurgia , Pessoas Transgênero , Laringoplastia/métodos , Cirurgia de Readequação Sexual/métodos
16.
Environ Int ; 171: 107714, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571993

RESUMO

Wastewater treatment plants (WWTPs) have been regarded as an important source of antibiotic resistance genes (ARGs) in environment, but out of municipal domestic WWTPs, few evidences show how environment is affected by industrial WWTPs. Here we chose Hangzhou Bay (HZB), China as our study area, where land-based municipal and industrial WWTPs discharged their effluent into the bay for decades. We adopted high-throughput metagenomic sequencing to examine the antibiotic resistome of the WWTP effluent and coastal sediment samples. And we proposed a conceptual framework for the assessment of antibiotic resistome risk, and a new bioinformatic pipeline for the evaluation of the potential horizontal gene transfer (HGT) frequency. Our results revealed that the diversity and abundance of ARGs in the WWTP's effluent were significantly higher than those in the sediment. Furthermore, the antibiotic resistome in the effluent-receiving area (ERA) showed significant difference from that in HZB. For the first time, we identified that industrial WWTP effluent boosted antibiotic resistome risk in coastal sediment. The crucial evidences included: 1) the proportion of ARGs derived from WWTP activated sludge (WA) was higher (14.3 %) and two high-risky polymyxin resistance genes (mcr-4 and mcr-5) were enriched in the industrial effluent receiving area; 2) the HGT potential was higher between resistant microbiome of the industrial effluent and its ERA sediment; and 3) the highest resistome risk was determined in the industrial effluent, and some biocide resistance genes located on high-risky contigs were related to long-term stress of industrial chemicals. These findings highlight the important effects of industrial activities on the development of environmental antimicrobial resistance.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos , Esgotos
17.
J Chromatogr A ; 1686: 463648, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36410170

RESUMO

High-performance size-exclusion chromatography (HPSEC) has been developed for the rapid and quantitative analysis of inactivated foot and mouth disease virus (FMDV) and adopted by regulatory agencies and vaccine manufacturers. However, strong non-specific adsorption of type A/AKT III FMDV was found on some batches of TSK G4000 SWXL column, which significantly affected the analysis accuracy. The adsorption mechanism was studied by investigating the charge and hydrophobicity of A/AKT III FMDV and another serotype O/Mya 98, as well as several model proteins, by zeta potential and hydrophobic interaction chromatography analysis. Adsorption was related to both the FMDV strain and column lots. Some specific amino acids residues on the A/AKT III FMDV surface may strongly interact with the column if the silica-based stationary phase was not completely diol-modified. Several amino acids and chaotropic salts were screened as additives in the mobile phase to suppress the non-specific adsorption of AKT III FMDV in HPSEC analysis. Results showed that adding 0.4 M of arginine (Arg), lysine (Lys), NaClO4, or NaSCN achieved 100% FMDV recovery and normal retention time. Suppression of interaction between FMDV and the backbone of the silica matrix through competitive binding with residues of FMDV or the matrix is considered as the main mechanism by which these four additives act as suppressors. The addition of Arg, NaClO4, or NaSCN led to an apparent decrease in the thermal dissociation temperature Tm of FMDV, whereas Lys slightly increased viral stability. Finally, the mobile phase comprising 0.4 M Lys was screened as optimum that allowed accurate quantification of both two serotypes of FMDV according to method validation; particularly, a relative standard deviation (RSD) < 5% was achieved for AKT III FMDV using three different lots of columns.


Assuntos
Vírus da Febre Aftosa , Sorogrupo , Proteínas Proto-Oncogênicas c-akt , Cromatografia em Gel , Aminoácidos , Lisina , Arginina
18.
Bioresour Technol ; 364: 128005, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36155808

RESUMO

Revealing class 1 integron characteristics under different operating conditions is of great importance to control antibiotic resistance genes (ARGs) during sludge anaerobic digestion (AD). This study investigated the variations of class 1 integrons and the ARGs carried by class 1 integrons in anaerobic sludge digesters under 25 °C, 35 °C, and 55 °C. The results showed lower intI1 abundance and fewer class I integrons with long gene cassette arrays at 55 °C than at 25 °C and 35 °C. Multi-resistance gene cassette arrays were observed in the digesters at 25 °C and 35 °C. Abundant ARGs were detected on class 1 integrons in all digesters with aminoglycosides as the dominant class. The abundance of ARGs on class 1 integrons in digesters at 55 °C was lower than that at 25 °C and 35 °C. Thermophilic AD is better than mesophilic ones in the control of ARGs carried by class 1 integrons.

19.
Sci Total Environ ; 852: 158530, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063953

RESUMO

Rivers are important environmental sources of human exposure to antibiotic resistance. Many factors can change antibiotic resistance in rivers, including bacterial communities, human activities, and environmental factors. However, the systematic comparison of the differences in antibiotics resistance and risks between urban rivers (URs) and rural rivers (RRs) in a pharmaceutical industry dominated city is still rare. In this study, Shijiazhuang City (China) was selected as an example to compare the differences in antibiotics resistance and risks between URs and RRs. The results showed higher concentrations of total quinolones (QNs) antibiotics in both water and sediment samples collected from URs than those from RRs. The subtypes and abundances of antibiotic resistance genes (ARGs) in URs were significantly higher than those in RRs, and most emerging ARGs (including OXA-type, GES-type, MCR-type, and tet(X)) were only detected in URs. The ARGs were mainly influenced by QNs in URs and social-economic factors (SEs) in RRs. The composition of the bacterial community was significantly different between URs and RRs. The abundance of antibiotic-resistant pathogenic bacteria (ARPBs) and virulence factors (VFs) were higher in URs than those in RRs. Therein, 371 and 326 pathogen types were detected in URs and RRs, respectively. Most emerging ARGs showed a significantly positive correlation with priority ARPBs. Variance partitioning analysis revealed that SEs were the main driving factors of ARGs (80 %) and microbial communities (92 %) both in URs and RRs. Structural equation models indicated that antibiotics (QNs) and microbial communities were the most direct influence of ARGs in URs and RRs, respectively. The cumulative resistance risk of QNs was high in URs, but relatively low in RRs. Enrofloxacin and flumequine posed the highest risk in water and sediment, respectively. This study could help us to better manage and control the risk of antibiotic resistance in different rivers.


Assuntos
Monitoramento Ambiental , Rios , Humanos , Rios/química , Enrofloxacina/análise , Monitoramento Ambiental/métodos , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Antibacterianos/análise , Bactérias/genética , Indústria Farmacêutica , Água/análise , Fatores de Virulência , China
20.
Huan Jing Ke Xue ; 43(9): 4616-4624, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096602

RESUMO

Wastewater treatment plants (WWTPs) are important sources of antibiotic resistance genes (ARGs) in aquatic environments. Mobile genetic elements (MGEs) and microbial communities are key factors that affect the proliferation of ARGs. To reveal the effects of WWTPs effluent discharge on the ARGs and microbial community in a coastal area, the structure and distribution of ARGs, MGEs, and microbial community in Shangyu (SY) and Jiaxing (JX) effluent receiving areas (ERAs) and the offshore area of Hangzhou Bay (HB) were investigated via high-throughput quantitative PCR and 16S rRNA high-throughput sequencing. The results showed that multidrug resistance genes were the most abundant ARGs across all the sampling sites. The diversity and abundance of ARGs and MGEs in the ERAs were much higher than those in the HB. Additionally, the diversities of the microbial community in the JX-ERA were higher than those in the SY-ERA and HB. PCoA showed that the distribution of ARGs, MGEs, and microbial communities in the ERAs and HB were significantly different, indicating that the long-term wastewater discharge could alter the distribution of ARGs, MGEs, and microbial communities in the coastal area. The co-occurrence pattern among ARGs, MGEs, and microbial communities revealed that 12 bacterial genera, such as Psychrobacter, Pseudomonas, Sulfitobacter, Pseudoalteromonas, and Bacillus, showed strong positive correlations with ARGs and MGEs. Most potential hosts carried multidrug and ß-lactamase resistance genes.


Assuntos
Microbiota , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , RNA Ribossômico 16S/genética , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...